73 research outputs found

    Preparation and characterization of magnesium hydroxyapatite coatings on 316L stainless steel

    Get PDF
    Magnesium hydroxyapatite coatings (MgHAp) were deposited on the surface of 316L stainless steel (316L SS) substrates by electrodeposition technique. Different concentrations of Mg2+ ion were incorporated into the apatite structure by adding Mg(NO3)2 into electrolyte solution containing 3×10-2 M Ca(NO3)2, 1.8×10-2 M NH4H2PO4 and   6×10-2 M NaNO3. With Mg2+ concentration 1×10-3 M, the obtained coatings have 0.2 wt% Mg2+. The influences of scanning potential ranges, scanning times to deposit MgHAp coatings were researched. The analytical results FTIR, SEM, X-ray, EDX, thickness and adhension strength showed that MgHAp coatings were single phase of HAp, fibrous shapes, thickness 8.1 µm and adhesion strength 7.20 MPa at the scanning potential ranges of 0÷-1.7 V/SCE and scanning times of 5 scans. Keywords. 316L SS, Electrodeposition, MgHAp

    Prussian blue analogues for potassium-ion batteries: insights into the electrochemical mechanisms

    Get PDF
    A comprehensive description of the electrochemical mechanisms of the Prussian Blue Analogue (PBA) K1.67Mn0.65Fe0.35[Fe(CN)6]0.92\ub70.45H2O is obtained by combining several complementary ex situ and operando physico-chemical characterisation techniques. This particular PBA, which shows very good electrochemical performance as a cathode material in potassium-ion batteries (PIBs), undergoes three successive redox reactions during the (de-)potassiation that are hereby identified by ex situ57Fe M\uf6ssbauer spectroscopy and operando Mn and Fe K-edge X-ray absorption spectroscopy. These reactions come along with notable modifications of the crystal structure, which are followed in real time by operando X-ray diffraction. The correlation of these results, interpreted with the support of chemometric methods, also reveals the limitations of this PBA, probably related to the deactivation of the Mn undergoing extensive reversible Jahn-Teller distortion during cycling as well as possible dissolution in the electrolyte. These results underline that optimisation of the chemical composition of PBAs is a crucial step towards the preparation of reliable and stable PBA-based cathodes for PIBs

    The responsibility of C-terminal domain in the thermolabile haemolysin activity of Vibrio parahaemolyticus and inhibition treatments by Phellinus sp. extracts

    Get PDF
    The thermolabile haemolysin (tlh) of Vibrio parahaemolyticus (Vptlh) from V. parahaemolyticus is a multiple-function enzyme, initially describes as a haemolytic factor activated by lecithin and phospholipase A2 enzymatic activity (Shinoda, 1991; Vazquez-Morado, 2021; Yanagase et al., 1970). Until now, the tlh structure has hypothesized including N-terminal and C-terminal domain, but what domain of the Vptlh structure does the haemolytic activity has not been refined yet. In this study, a 450-bp VpTLH nucleotide sequence of the entire Vptlh gene encoded the C-terminal domain cloned firstly to examine its responsibility in the activity of the Vptlh. The C-terminal domain fused with a 6-His-tag named the His-tag-VpC-terminal domain was expressed successfully in soluble form in the BL21 (DE3) PlysS cell. Remarkably, both expression and purification results confirmed a high agreement in the molecular weight of the His-tag-VpC-terminal domain was 47 kDa. This work showed the His-tag-VpC-terminal domain lysed the erythrocyte membranes in the blood agar and the phosphate buffered saline (0.9%) media without adding the lecithin substrate of the phospholipase enzyme. Haemolysis occurred at all tested diluted concentrations of His-tag-VpC-terminal domain (p < 0.05), providing evidence for the independent haemolytic activity of the His-tag-VpC-terminal domain. The content of 100 μg of the His-tag-VpC-terminal domain brought the highest haemolytic activity of 80% compared to that in the three remaining contents. Significantly, the His-tag-VpC-terminal domain demonstrated not to involve the phospholipase activity in Luria-Bertani agar supplemented with 1% (vol/vol) egg yolk emulsion. All results proved the vital responsibility of the His-tag-VpC-terminal domain in causing the haemolytic activity without the required activation by the phospholipase enzyme. Raw extracts of Phellinus igniarus and Phellinus pipi at 10-1 mg/mL inhibited the haemolytic activity of the His-tag-VpC-terminal domain from 67.7% to 87.42%, respectively. Hence applying the His-tag-VpC-terminal domain as a simple biological material to evaluate quickly potential derivatives against the Vptlh in vivo conditions will accessible and more advantageous than using the whole of the Vptlh

    The effect of different media and temperature conditions for Salmonella bacteriophage preservation

    Get PDF
    This research aimed to determine the optimal media and temperature conditions for the long-term storage of bacteriophages. In this study, the viability of Salmonella phages in 50% glycerol, 10% sodium chloride-magnesium sulfate (SM) buffer, and 5% dimethyl sulfoxide (DMSO) media at room temperature, 4oC, -20oC, and -80oC for 12 months was determined. In 50% glycerol, at the end of the experiment, no significant difference was found between four temperature conditions on phage density, ranging from 6.20-6.23 log10 PFU/mL (P>0.05). Under 10% SM medium, phage preservation at room temperature provided the optimum density at 6.31 log10 PFU/mL. In addition, phages preserved in a 5% DMSO medium were of similar density values across all temperature treatments. Still, their availability after 12 month-storage (88.0-88.5%) was significantly lower (P<0.05) than that of 50% glycerol and 10% SM. Moreover, for phage lysis capacity, low temperatures (4oC, -20oC, and -80oC) were superior to room temperature used for preservation. Considering the density, lysis capacity, and practical convenience, storing phages at 4°C in a 50% Glycerol medium is recommended

    Multifunctional nanocarriers of Fe3O4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery

    Get PDF
    Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.The authors are grateful for the financial support by AOARD under award FA2386-17-1-4042. The Spanish government is acknowledged for the “Nanotechnology in translational hyperthermia (HIPERNANO)” research network (RED2018102626-T) and for funding under the project number MAT2017-83631-C3. NTK Thanh thanks EPSRC (EP/M015157/1). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed

    2023 roadmap for potassium-ion batteries

    Get PDF
    The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape

    Awareness and preparedness of healthcare workers against the first wave of the COVID-19 pandemic: A cross-sectional survey across 57 countries.

    Get PDF
    BACKGROUND: Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave. METHODS: This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected COVID-19 patients and prior COVID-19 case-management training. RESULTS: We surveyed 24,653 HCWs from 371 hospitals across 57 countries and received 17,302 responses from 70.2% HCWs overall. The median COVID-19 preparedness score was 11.0 (interquartile range [IQR] = 6.0-14.0) and the median awareness score was 29.6 (IQR = 26.6-32.6). HCWs at COVID-19 designated facilities with previous outbreak experience, or HCWs who were trained for dealing with the SARS-CoV-2 outbreak, had significantly higher levels of preparedness and awareness (p<0.001). Association rule mining suggests that nurses and doctors who had a 'great-extent-of-confidence' in handling suspected COVID-19 patients had participated in COVID-19 training courses. Male participants (mean difference = 0.34; 95% CI = 0.22, 0.46; p<0.001) and nurses (mean difference = 0.67; 95% CI = 0.53, 0.81; p<0.001) had higher preparedness scores compared to women participants and doctors. INTERPRETATION: There was an unsurprising high level of awareness and preparedness among HCWs who participated in COVID-19 training courses. However, disparity existed along the lines of gender and type of HCW. It is unknown whether the difference in COVID-19 preparedness that we detected early in the pandemic may have translated into disproportionate SARS-CoV-2 burden of disease by gender or HCW type

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    APPLYING SOME MATCHING ALGORITHMS FOR SEQUENCE IGNATURE TO ANALYZE AND DETECT ENTRIES INTO SYSTEM NETWORKS

    No full text
    Nowadays, developing and evaluating pattern matching algorithms for the identification of network-attack has been constantly evolving. In this paper, the pattern matching algorithms is deployed by emulating forms of network attacks on intrusion detection system together with firewall IOS/I PS. Additionally, tools for network monitoring such as open source munintools,are also used to analyze and evaluate the performance of network-attack. Next, the time of pattern identification in the Snort\u27s machine, and the performance of Snort as well as the number of packets passing through Snort, the amount of alerts per second, connection speed in real time, the percentage of received data in pattern matching process, etc. are also measured based on intelligent algorithms built in Snort. This aims to offer a method of choosing different algorithms for different forms of intrusion detection
    corecore